Para-CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

نویسندگان

  • Mircea CRASMAREANU
  • Laurian-Ioan PIŞCORAN
  • Laurian-Ioan Pişcoran
چکیده

We determine a 2-codimensional para-CR structure on the slit tangent bundle T0M of a Finsler manifold (M,F ) by imposing a condition regarding the almost paracomplex structure P associated to F when restricted to the structural distribution of a framed para-f -structure. This condition is satisfied when (M,F ) is of scalar flag curvature (particularly constant) or if the Riemannian manifold (M, g) is of constant curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional CR-structure on the slit tangent bundle T0M of a Finsler manifold (M, F) by imposing a condition on the almost complex structure associated to F when restricted to the structural distribution of a framed f -structure. This condition is satisfied when (M, F) is of scalar flag curvature (particularly flat). In the Riemannian case (M, g) this last condition means tha...

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Finsler and Lagrange Geometries in Einstein and String Gravity

We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler g...

متن کامل

Finsler–Lagrange Geometries and Standard Theories in Physics: New Methods in Einstein and String Gravity

In this article, we review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Fin...

متن کامل

The Cr-geometry of the Complex Indicatrix

In this paper is studied the differential geometry of the complex indicatrix, which is approached as an embedded CR hypersurface of the punctual holomorphic tangent bundle of a complex Finsler space. Following the study of CR submanifolds of a Kähler manifold and using the submanifold formulae there are investigated some properties of the complex indicatrix, such as the fact that it is an extri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014